分类
标签云
评论汇
每周精读
MBA智库资讯,汇聚中国主流的商业管理新闻
监督微调(Supervised Fine-Tuning)是一种常用于深度学习中的模型优化技术。在监督式微调中,使用一个已经训练好的深度学习模型(称为预训练模型)作为初始状态,然后在目标任务的训练集上进行微调,使得模型能够更好地适应目标任务。 在监督微调中,首先使用一个大规模的数据集对预训练模型进行训练,以使其学会表示通用的特征。然后,使用一个较小规模的数据集,即目标任务数据集,对预训练模型进行微调,使其适应特定的任务或领域。通常情况下,微调的层次较低,只对模型的最后几层进行微调,以便更好地适应目标任务或领域的特定特征。